Abstract

BackgroundRecently we reported a nanocontainer based reduction triggered release system through an engineered transmembrane channel (FhuA Δ1-160; Onaca et al., 2008). Compound fluxes within the FhuA Δ1-160 channel protein are controlled sterically through labeled lysine residues (label: 3-(2-pyridyldithio)propionic-acid-N-hydroxysuccinimide-ester). Quantifying the sterical contribution of each labeled lysine would open up an opportunity for designing compound specific drug release systems.ResultsIn total, 12 FhuA Δ1-160 variants were generated to gain insights on sterically controlled compound fluxes: Subset A) six FhuA Δ1-160 variants in which one of the six lysines in the interior of FhuA Δ1-160 was substituted to alanine and Subset B) six FhuA Δ1-160 variants in which only one lysine inside the barrel was not changed to alanine. Translocation efficiencies were quantified with the colorimetric TMB (3,3',5,5'-tetramethylbenzidine) detection system employing horseradish peroxidase (HRP). Investigation of the six subset A variants identified position K556A as sterically important. The K556A substitution increases TMB diffusion from 15 to 97 [nM]/s and reaches nearly the TMB diffusion value of the unlabeled FhuA Δ1-160 (102 [nM]/s). The prominent role of position K556 is confirmed by the corresponding subset B variant which contains only the K556 lysine in the interior of the barrel. Pyridyl labeling of K556 reduces TMB translocation to 16 [nM]/s reaching nearly background levels in liposomes (13 [nM]/s). A first B-factor analysis based on MD simulations confirmed that position K556 is the least fluctuating lysine among the six in the channel interior of FhuA Δ1-160 and therefore well suited for controlling compound fluxes through steric hindrance.ConclusionsA FhuA Δ1-160 based reduction triggered release system has been shown to control the compound flux by the presence of only one inner channel sterical hindrance based on 3-(2-pyridyldithio)propionic-acid labeling (amino acid position K556). As a consequence, the release kinetic can be modulated by introducing an opportune number of hindrances. The FhuA Δ1-160 channel embedded in liposomes can be advanced to a universal and compound independent release system which allows a size selective compound release through rationally re-engineered channels.

Highlights

  • IntroductionA channel protein that is embedded in an impermeable membrane offers the possibility to develop novel triggered drug release systems with potential applications in synthetic biology (pathway engineering), and medicine (drug release)

  • A channel protein that is embedded in an impermeable membrane offers the possibility to develop novel triggered drug release systems with potential applications in synthetic biology, and medicine

  • FhuA Δ1-160 based compound release system Figure 1 shows a FhuA Δ1-160 based compound release system where FhuA Δ1-160 is embedded in a lipid membrane together with the colorimetric HRP/TMB reporter used for quantifying TMB translocation

Read more

Summary

Introduction

A channel protein that is embedded in an impermeable membrane offers the possibility to develop novel triggered drug release systems with potential applications in synthetic biology (pathway engineering), and medicine (drug release). FhuA is a large monomeric transmembrane protein of 714 amino acids located in the E. coli outer membrane folded into 22 anti-parallel β-strands and two domains [7]. We reported an exclusive translocation of calcein through an engineered transmembrane FhuA Δ1-160 which had been embedded in a tri-block copolymer membrane PMOXA-PDMS-PMOXA; where PMOXA = poly(2methyl-2-oxazoline) and PDMS = poly(dimethyl siloxane); and could be opened up through a reduction triggered system [12]. We reported a nanocontainer based reduction triggered release system through an engineered transmembrane channel (FhuA Δ1-160; Onaca et al, 2008). Compound fluxes within the FhuA Δ1-160 channel protein are controlled sterically through labeled lysine residues (label: 3-(2-pyridyldithio)propionic-acid-N-hydroxysuccinimideester). Quantifying the sterical contribution of each labeled lysine would open up an opportunity for designing compound specific drug release systems

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.