Abstract

Porous electrodes and ionic liquids could significantly enhance the energy storage of supercapacitors. However, they may reduce the charging dynamics and power density due to the nanoconfinement of porous electrodes and the high viscosity of ionic liquids. A comprehensive understanding of the charging mechanism in porous supercapacitors with ionic liquids provides a crucial theoretical foundation for their design optimization. Here, we review the progress of molecular simulations of the charging dynamics in supercapacitors consisting of porous electrodes and ionic liquids. We highlight and delve into the breakthroughs in the ion transport and charging mechanism for electrodes with subnanometer pores and realistic porous structures. We also discuss future directions for the charging dynamics of supercapacitors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call