Abstract
BackgroundDiabetes mellitus is a major chronic disease that continues to increase significantly. One of the most important and costly complications of diabetes are foot infections that may be colonized by pathogenic and antimicrobial resistant bacteria, harboring several virulence factors, that could impair its successful treatment. Staphylococcus aureus is one of the most prevalent isolate in diabetic foot infections, together with aerobes and anaerobes.MethodsIn this study, conducted in the Lisbon area, staphylococci isolated (n = 53) from diabetic foot ulcers were identified, genotyped and screened for virulence and antimicrobial resistance traits. Genetic relationship amongst isolates was evaluated by pulsed-field-gel-electrophoresis with further multilocus sequence typing of the identified pulsotypes. PCR was applied for detection of 12 virulence genes and e-test technique was performed to determine minimal inhibitory concentration of ten antibiotics.ResultsAmong the 53 isolates included in this study, 41 Staphylococcus aureus were identified. Staphylococcal isolates were positive for intercellular adhesins icaA and icaD, negative for biofilm associated protein bap and pantone-valentine leucocidin pvl. S. aureus quorum sensing genes agrI and agrII were identified and only one isolate was positive for toxic shock syndrome toxin tst.36 % of staphylococci tested were multiresistant and higher rates of resistance were obtained for ciprofloxacin and erythromycin. Clonality analysis revealed high genomic diversity and numerous S. aureus sequence types, both community- and hospital-acquired, belonging mostly to clonal complexes CC5 and C22, widely diffused in Portugal nowadays.ConclusionsThis study shows that diabetic foot ulcer staphylococci are genomically diverse, present resistance to medically important antibiotics and harbour virulence determinants. These properties suggest staphylococci can contribute to persistence and severity of these infections, leading to treatment failure and to the possibility of transmitting these features to other microorganisms sharing the same niche. In this context, diabetic patients may become a transmission vehicle for microorganisms’ clones between community and clinical environments.
Highlights
Diabetes mellitus is a major chronic disease that continues to increase significantly
Staphylococcus is a frequent commensal bacteria of human skin and mucosa, being one of the major cause of infections in humans, ranging from minor skin infections to severe infections such as septicaemia, endocarditis and osteomyelitis [6]. These bacteria may produce several virulence factors, one of the most important being biofilm formation, which consists in adherent bacterial populations growing inside their polymeric structures that confer the ability of evasion to immune system and to multiple antibiotic treatments [7]
Bacterial isolates A total of 53 staphylococci clinical isolates from diabetic foot ulcers, belonging to 49 samples collected in a transversal observational study conducted at four clinical centers in Lisbon, from January 2010 to July 2010 [4], were used in this study
Summary
Diabetes mellitus is a major chronic disease that continues to increase significantly. Staphylococcus is a frequent commensal bacteria of human skin and mucosa, being one of the major cause of infections in humans, ranging from minor skin infections to severe infections such as septicaemia, endocarditis and osteomyelitis [6]. These bacteria may produce several virulence factors, one of the most important being biofilm formation, which consists in adherent bacterial populations growing inside their polymeric structures that confer the ability of evasion to immune system and to multiple antibiotic treatments [7]. A biofilm associated protein, coded by the gene bap, was described as essential in biofilm production of some Staphylococcus spp. isolated from nosocomial infections [9]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.