Abstract

BackgroundMulti-drug resistant (MDR) Acinetobacter baumannii is one of the most important causes of nosocomial infections. The purpose of this study was to identify antibiotic resistance patterns, biofilm formation and the clonal relationship of clinical and environmental isolates of A. baumannii by Pulsed Field Gel Electrophoresis method. Forty-three clinical and 26 environmental isolates of the MDR A. baumannii were collected and recognized via API 20NE. Antibiotic resistance of the isolates was assessed by the disk diffusion method, and the biofilm formation test was done by the microtiter plate method. Pulsed Field Gel Electrophoresis (PFGE) was used to assess the genomic features of the bacterial isolates.ResultsThe resistance rate of clinical and environmental isolates against antibiotics were from 95 to 100%. The difference in antibiotic resistance rates between clinical and environmental isolates was not statistically significant (p > 0.05). Biofilm production capabilities revealed that 31 (44.9%), and 30 (43.5%) isolates had strong and moderate biofilm producer activity, respectively. PFGE typing exhibited eight different clusters (A, B, C, D, E, F, G, and H) with two significant clusters included A and G with 21 (30.4%) and 16 (23.2%) members respectively, which comprises up to 53.6% of all isolates. There was no relationship between biofilm formation and antibiotic resistance patterns with PFGE pulsotypes.ConclusionsThe results show that there is a close relationship between environmental and clinical isolates of A. baumannii. Cross-contamination is also very important that occurs through daily clinical activities between environmental and clinical isolates. Therefore, in order to reduce the clonal contamination of MDR A. baumannii environmental and clinical isolates, it is necessary to use strict infection control strategies.

Highlights

  • Multi-drug resistant (MDR) Acinetobacter baumannii is one of the most important causes of nosocomial infections

  • The emergence of multi-drug resistant (MDR) and extensively drugresistant (XDR) A. baumannii isolates as an important cause of nosocomial infections is one of the major health problems in different countries of the world [2, 5, 6]

  • Most clinical (95.3%) and environmental (84.6%) isolates of A. baumannii were resistant to all tested antibiotics and designated as extensively drug-resistance (XDR)

Read more

Summary

Introduction

Multi-drug resistant (MDR) Acinetobacter baumannii is one of the most important causes of nosocomial infections. The purpose of this study was to identify antibiotic resistance patterns, biofilm formation and the clonal relationship of clinical and environmental isolates of A. baumannii by Pulsed Field Gel Electrophoresis method. The impervious outer membrane and environmental exposure to a large pool of resistance genes are considered as selective pressures that cause XDR isolates in these bacteria [7] This pathogen possesses a remarkable ability to survive and widely spreading in hospital environments and mucosal surfaces [8]. Long-term survival is likely to be a major cause of hospital transmission of this organism, especially in ICU wards and through healthcare staff [1] For this reason, particular attention has been paid to the capability of A. baumannii to cause outbreaks of nosocomial infections and to obtain resistance to antibiotics [4]. This research aimed to identify antibiotic resistance patterns, biofilm formation and clonal association of clinical and environmental isolates of A. baumannii by PFGE technique

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.