Abstract

Handling nanometer-thick films and nano-objects remains a challenge. Applying self-assembly properties of surfactants to nanomaterials manipulation may be the key to the fast, easy, cost-effective growth of 2D and 3D nanostructures. Newton black films (NBFs) are self-assembled bilayers of surfactant, well-organized, but fragile objects. To render such films amenable to practical applications, it is necessary to find ways to transfer them onto solid substrates. A method developed recently to transfer NBFs onto a solid substrate while preserving their molecular organization (Benattar, J.-J.; Nedyalkov, M.; Lee, F. K.; Tsui, O. K. C. Angew. Chem., Int. Ed. 2006, 45, 4186) is broadened here to different surfaces. The method requires hydrophobic, planar, atomically smooth surfaces. This study presents the adhesion of a fluorinated NBF surfactant onto hydrophobically treated silica and silicon surfaces (with etching or silanization). The structures of the free-standing film, bare substrates, and transferred films are investigated using X-ray reflectivity. The homogeneity of the surfaces before and after bilayer deposition is examined by atomic force microscopy (AFM). Multiple transfers are tested and described for the future development of more complex architectures involving many surfactant layers and inserted nanosized objects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.