Abstract

Determining multiscale, concurrent strain, and deformation mechanisms in hierarchical biological materials is a crucial engineering goal, to understand structural optimization strategies in Nature. However, experimentally characterizing complex strain and displacement fields within a 3D hierarchical composite, in a multiscale full-field manner, is challenging. Here, we determined the in situ strains at the macro-, meso-, and molecular-levels in stomatopod cuticle simultaneously, by exploiting the anisotropy of the 3D fiber diffraction coupled with sample rotation. The results demonstrate the method, using the mineralized 3D α-chitin fiber networks as strain sensors, can capture submicrometer deformation of a single lamella (mesoscale), can extract strain information on multiple constituents concurrently, and shows that α-chitin fiber networks deform elastically while the surrounding matrix deforms plastically before systematic failure under compression. Further, the results demonstrate a molecular-level prestrain gradient in chitin fibers, resulting from different mineralization degrees in the exo- and endo cuticle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call