Abstract

A molecular thermodynamic approach is described for predicting polymer glass transition temperatures as a function of the amount of gas sorbed by the polymer. The predictive model is based on a lattice theory of polymer solutions and the concept of order parameters, the use of which has been important in the development of macroscopic models and phenomenological analyses of glass transitions. A general definition of the solvent-induced glass transition is given, and then applied within the framework of this lattice model and its order parameters to predict glass transition temperatures for several polymer-compressed CO 2 mixtures. The model is also used to examine a new experimental observation described as retrograde vitrification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.