Abstract

During the last few decades, the molecular understanding of the mechanisms involved in primary hyperoxalurias (PHs) has set the stage for novel therapeutic approaches. The availability of PH mouse models has facilitated preclinical studies testing innovative treatments. PHs are autosomal recessive diseases where the enzymatic deficit plays a central pathogenic role. Thus, molecular therapies aimed at restoring such deficit or limiting the consequences of the metabolic derangement could be envisioned, keeping in mind the specific challenges posed by the cell-autonomous nature of the deficiency. Various molecular approaches like enzyme replacement, substrate reduction, pharmacologic chaperones, and gene and cell therapies have been explored in cells and mouse models of disease. Some of these proof-of-concept studies have paved the way to current clinical trials on PH type 1, raising hopes that much needed treatments will become available for this severe inborn error of metabolism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.