Abstract

Anaplastic thyroid cancer (ATC) represents one of the most lethal human cancers and although this tumor type is rare, ATC accounts for the majority of deaths from thyroid cancer. Due to the rarity of ATC, a comprehensive genomic characterization of this tumor type has been challenging, and thus the development of new therapies has been lacking. To date, there is only one mutation-driven targeted therapy for BRAF-mutant ATC. Recent genomic studies have used next generation sequencing to define the genetic landscape of ATC in order to identify new therapeutic targets. Together, these studies have confirmed the role of oncogenic mutations of MAPK pathway as key drivers of differentiated thyroid cancer (BRAF, RAS), and that additional genetic alterations in the PI3K pathway, TP53, and the TERT promoter are necessary for anaplastic transformation. Recent novel findings have linked the high mutational burden associated with ATC with mutations in the Mismatch Repair (MMR) pathway and overactivity of the AID/APOBEC family of cytidine deaminases. Additional novel mutations include cell cycle genes, SWI/SNF chromatin remodeling complex, and histone modification genes. Mutations in RAC1 were also identified in ATC, which have important implications for BRAF-directed therapies. In this review, we summarize these novel findings and the new genetic landscape of ATC. We further discuss the development of therapies targeting these pathways that are being tested in clinical and preclinical studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.