Abstract

A molecular theory for the rheological properties of moderately concentrated polymer solutions is developed on the basis of a model of interacting dumbbells. The interaction is treated in a mean field approximation, leading to an effective one-particle potential and a Gaussian stationary distribution function. Various rheological functions such as birefringence, shear viscosity and first normal-stress coefficient for simple shear flow and the Trouton viscosity for simple extensional flow are calculated. Good qualitative agreement with experimental observations is found, especially at intermediate flow rates. It is predicted, for example, that the birefringence increases approximately linearly with shear rate at intermediate shear rates and that the concentration dependence of the gradient varies asc1/2. The typical non-Newtonian behaviour is obtained for the shear viscosity. For small concentrations the onset of shear rate dependence decreases asc−1/2. At intermediate shear rates an apparent power law is obtained with an exponent between − 0.5 and − 1.0, decreasing with concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.