Abstract

To explore the influence of three structurally different polycarboxylate ligands H2L1 to H4L3 in the system Cd(II)/PPAN, three coordination polymers, formulated as {Cd2(PPAA)2(L1)2}n (1), {[Cd2(PPAA)2(HL2) (H2O)].2H2O}n (2), {Cd2(PPAN)2(L3) (H2O)2}n (3) have been obtained under similar conditions (PPAA− = 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)acetate, PPAN = 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)acetonitrile, H2L1 = 1,3-benzenedicarboxylic acid, H3L2 = 1,3,5-benzenetricarboxylic acid, H4L3 = 1,2,4,5-benzenetetracarboxylic acid). In 1–2, PPAN are hydrolyzed into a novel PPAA− ligand. The structure determination reveals that complex 1 contains 1D double chains of {[Cd(PPAA)]+}n cation structural units, which are further extended by these μ3-(L1)2− ligands forming a novel 2D three-layered framework with (4.82)2(43.62.8)2(4383)2(48.66.8) topology. Complex 2 is one-dimensional (1D) ribbon-like chains having two kinds of dimerics [Cd(PPAA)]2 and [Cd(COO)]2 subunits and dimeric Cd(II) units bridged by μ3-(HL2)2− ligands. Complex 3 shows an undulating 2D (4, 4)-network by μ4-(L3)4−. In addition, photoluminescent properties of three coordination polymers were also investigated in this paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call