Abstract

Various diseases could be transmitted from aquatic species, especially fish, to humans, which is considered to be a major human health concern across the world. In recent decades, molecular techniques have been applied to examine and identify various bacterial species in fish farms. Molecular techniques are rapid, accurate, sensitive, cost-effective, and have the ability to identify specific pathogens without the need for conventional methods. Furthermore, molecular techniques are particularly useful for the detection of multiple species or in case of low template. This review study aimed to describe various molecular methods, including multiplex-polymerase chain reaction, high-resolution melting real-time, restriction fragment length polymorphism, random amplification of polymorphic DNA, nucleic acid sequence-based amplification, rolling circle amplification, fluorescence in-situ hybridization, microarray, and matrix-assisted laser desorption/ionization. In addition, we evaluated the biosensors used for the detection of zoonotic bacteria, such as Vibrio vulnificus, Vibrio cholerae, Listeria monocytogenes, Streptococcus iniae, Lactococcus garvieae, Aeromonas hydrophila, Edwardsiella tarda, Mycobacterium spp., Photobacterium damselae subsp. Damselae, and Pseudomonas fluorescens, which are transmitted from fish to humans. These bacteria are of great importance in the aquaculture industry and in terms of human health.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call