Abstract

Candida species are the causative agent of oral candidiasis, with medical devices being platforms for yeast anchoring and tissue colonization. Identifying the infectious agent involved in candidiasis avoids an empirical prescription of antifungal drugs. The application of high-throughput technologies to the diagnosis of yeast pathogens has clear advantages in sensitivity, accuracy, and speed. Yet, conventional techniques for the identification of Candida isolates are still routine in clinical and research settings. Molecular approaches are the focus of intensive research, but conversion into clinic settings requires overcoming important challenges. Several molecular approaches can accurately identify Candida spp.: Polymerase Chain Reaction, Microarray, High-Resolution Melting Analysis, Multi-Locus Sequence Typing, Restriction Fragment Length Polymorphism, Loop-mediated Isothermal Amplification, Matrix Assisted Laser Desorption Ionization-mass spectrometry, and Next Generation Sequencing. This review examines the advantages and disadvantages of the current molecular methods used for Candida spp. Identification, with a special focus on oral candidiasis. Discussion regarding their application for the diagnosis of oral infections aims to identify the most rapid, affordable, accurate, and easy-to-perform molecular techniques to be used as a point-of-care testing method. Special emphasis is given to the difficulties that health care professionals need to overcome to provide an accurate diagnosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.