Abstract

This review article provides an overview of the experimental studies of in-cylinder flows using various flow measurement techniques with a focus on molecular tagging velocimetry. It is necessary to understand the evolution of large-scale and small-scale turbulence as prepared during the intake stroke with a cycle resolved quantitative description. Due to the difficulty in obtaining these descriptions, either by modeling or experimentally, they are often characterized with somewhat ambiguous notions of bulk swirl and tumble measurement methods. During the intake stroke, in-cylinder flows are formed in such a manner as to provide advantageous spatial and temporal behavior for mixture formation later during the compression stroke. Understanding the details of how these flows influence fuel-air mixing, the initiation of ignition, combustion, and subsequent flame propagation processes is the primary motivation for the development of the methods described in this paper. The authors provide an introduction to fundamental flow motion inside the engine cylinder and measurement techniques, e.g., hot-wire anemometry, laser Doppler anemometry, and particle image velocimetry. Furthermore, molecular tagging velocimetry is discussed in detail in terms of (i) different mechanisms, (ii) procedure and data reduction methods to obtain the desired flow properties such as velocity, vorticity, and turbulent intensities, and (iii) applications to flow studies in internal combustion engines. Finally, the significance of experimental investigations of in-cylinder flows is discussed along with possible future applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call