Abstract

We present a new molecular phylogeny for 41 species of African mormyroid electric fishes derived from the 12S, 16S and cytochrome b genes and the nuclear RAG2 gene. From this, we reconstruct the evolution of the complex electric organs of these fishes. Phylogenetic results are generally concordant with earlier preliminary molecular studies of a smaller group of species and with the osteology-based classification of Taverne, which divides the group into the Gymnarchidae and the Mormyridae, with the latter including the subfamilies Petrocephalinae (Petrocephalus) and Mormyrinae (all remaining taxa). However, we find that several genera previously recognized by Taverne are non-monophyletic. Within the Mormyrinae, the genus Myomyrus is the sister group to all the remaining taxa. Other well-supported clades within this group are recovered. A reconstruction of electrocyte evolution on the basis of our best-supported topology suggests that electrocytes with penetrating stalks evolved once early in the history of the mormyrids followed by multiple paedomorphic reversals to electrocytes with non-penetrating stalks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.