Abstract

AbstractSymmetry methods employed in the ab initio polyatomic program HONDO are extended to the coupled perturbed Hartree–Fock (CPHF) formalism, a key step in the analytical computation of energy first derivatives for configuration interaction (CI) wavefunctions, and energy second derivatives for Hartree–Fock (HF) wavefunctions. One possible computational strategy is to construct Fock‐like matrices for each nuclear coordinate in which the one‐ and two‐electron integrals of the usual Fock matrix are replaced by the integral first derivatives. “Skeleton” matrices are constructed from the unique blocks of electron‐repulsion integral derivatives. The correct matrices are generated by applying a symmetrization operator. The analysis is valid for many wavefunctions, including closed‐ or open‐shell spin‐restricted and spin‐unrestricted HF wavefunctions. To illustrate the method, we compare the computer time required for setting up the coupled perturbed HF equations for eclipsed ethane using D3h symmetry point group and various subgroups of D3h. Computational times are roughly inversely proportional to the order of the point group.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.