Abstract

The synthesis and characterization of the new tetraazamacrocycle L, bearing two 1,1'-bis(2-phenol) groups as side-arms, is reported. The basicity behavior and the binding properties of L toward alkali metal ions were determined by means of potentiometric measurements in ethanol/water 50:50 (v/v) solution (298.1+/-0.1 K, I=0.15 mol dm(-3)). The anionic H(-1)L(-) species can be obtained in strong alkaline solution, indicating that not all of the acidic protons of L can be removed under the experimental conditions used. This species behaves as a tetraprotic base (log K(1)=11.22, log K(2)=9.45, log K(3)=7.07, log K(4)=5.08), and binds alkali metal ions to form neutral [MH(-1)L] complexes with the following stability constants: log K(Li)=3.92, log K(Na)=3.54, log K(K)=3.29, log K(Cs)=3.53. The arrangement of the acidic protons in the H(-1)L(-) species depends on the polarity of the solvents used, and at least one proton switches from the amine moiety to the aromatic part upon decreasing the polarity of the solvent. In this way two different binding areas, modulated by the polarity of solvents, are possible in L. One area is preferred by alkali metal ions in polar solvents, the second one is preferred in solvents with low polarity. Thus, the metal ion can switch from one location to the other in the ligand, modulated by the polarity of the environment. A strong hydrogen-bonding network should preorganize the ligand for coordination, as confirmed by MD simulations. The crystal structure of the [Na(H(-1)L)].CH(3)CN complex (space group P2(1)/c, a=12.805(1), b=20.205(3), c=14.170(2) A, beta=100.77(1) degrees, V=3601.6(8) A(3), Z=4, R=0.0430, wR2=0.1181), obtained using CH(2)Cl(2)/CH(3)CN as mixed solvent, supports this last aspect and shows one of the proposed binding areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.