Abstract

Genome editing technology commenced in 1996 with the discovery of the first zinc-finger nuclease. Application of Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) associated protein 9 (Cas9) technology to genome editing of mammalian cells allowed researchers to use genome editing more easily and cost-effectively. However, one of the technological problems that remains to be solved is "off-target effects", which are unexpected mutations in nontarget DNA. One significant improvement in genome editing technology has been achieved with molecular/protein engineering. The key to this engineering is a "switch" to control function. In this review, we discuss recent efforts to design novel "switching" systems for precise editing using genome editing tools.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call