Abstract

Malaria is a major public health problem in the Democratic Republic of Congo. Despite progress achieved over the past decade in the fight against malaria, further efforts have to be done such as in the surveillance and the containment of Plasmodium falciparum resistant strains. We investigated resistance to artemisinin-based combination therapies currently in use in Democratic Republic of Congo by surveying molecular polymorphisms in three genes: pfcrt, pfmdr1 and pfk13 to explore possible emergence of amodiaquine, lumefantrine or artemisinin resistance in Democratic Republic of Congo. This study essentially revealed that resistance to chloroquine is still decreasing while polymorphism related to amodiaquine resistance seems to be not present in Democratic Republic of Congo, that three samples, located in the east of the country, harbor Pfmdr1 amplification and that none of the mutations found in South-East Asia correlated with artemisinine resistance have been found in Democratic Republic of Congo. But new mutations have been identified, especially the M476K, occurred in the same position that the M476I previously identified in the F32-ART strain, strongly resistant to artemisinine. Antimalarial first-line treatments currently in use in Democratic Republic of Congo are not associated with emergence of molecular markers of resistance.

Highlights

  • In the Democratic Republic of Congo (DRC) malaria is still a major public health problem

  • Out of the 580 samples collected over the six geographic sites, 280 (48.2%) were PCR-positive to P. falciparum, among which 6 (2.14%) were mixed infections

  • In the results provided by Taylor et al in 2015, this mutation appears to be the most common in African parasites as it has been reported in several African countries (Gambia, Mali, Ghana, Burkina-Faso, Kenya, Tanzania, Malawi and DRC) [41]

Read more

Summary

Methods

The protocol and the informed consent received the ethical approbation from the Ministry of Public Health of the DRC and from the Institutional Committee of the Faculty of Medicine, University of Kinshasa. All the participants involved in the study (or the parents/guardians of children) provided a written consent. We conducted this study in six areas with different dynamics of transmission: Bolenge, Luzizila and Mweka in the equatorial facies; Punia and Kapolowe in the tropical facies and Butembo in the mountain facies. Malaria transmission is perennial in the equatorial and tropical facies but seasonal in the mountain one. One hundred individual has been randomly selected in a household survey (except for Punia where only eighty individuals could be selected). The survey was conducted between March and November 2014

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call