Abstract

The choice of adequate methods for epidemiological purposes remains a challenging problem in Neisseria gonorrhoeae molecular monitoring. In this study, the collection of geographically unrelated gonococci (n = 103) isolated in Russian clinics was comparably tested by (i) a traditional serotyping scheme, (ii) por typing, (iii) Neisseria gonorrhoeae multiantigen sequence typing (NG-MAST), and (iv) multilocus sequence typing (MLST). It is shown that, according to sequencing data, a third of the strains carried new porB1 alleles, as well as tbpB ones, and more than half of the samples had new sequence types (STs) as determined by NG-MAST or MLST. The discriminatory power for each typing method was calculated by using the Hunter-Gaston discriminatory index, D. Commonly, modern nucleic acid-based typing methods (por typing, NG-MAST, and MLST) appeared to be more efficient than the classical serotyping scheme. While the traditional serotyping gave a D value of 0.82, the por typing, NG-MAST, and MLST approaches yielded D values of 0.97, 0.98, and 0.91, respectively. Each typing technique revealed the distribution of gonococci slightly correlated with their geographical sources. However, only the MLST method STs were highly associated with certain phenotypes. Although ST1594, ST1892, and ST6720 were typical for susceptible gonococci, ST1901 and ST6716 were undoubtedly associated with a multidrug-resistant phenotype. We conclude that every tested nucleic acid-based typing method is suitable for N. gonorrhoeae molecular surveillance. However, the MLST method seems to serve large-scale epidemiological purposes, whereas the NG-MAST and por typing approaches are more appropriate for the investigation of local outbreaks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call