Abstract

The temperature dependence of the collisional quenching of highly vibrationally excited pyrazine by CO2 molecules has been investigated for the temperature range 243–364 K using high resolution time resolved diode laser spectroscopy. Particular emphasis is placed on vibration to rotation-translation (V→R/T) energy transfer which leaves the CO2 vibrations unexcited and occurs predominantly through short-range repulsive forces. Vibrationally hot pyrazine is prepared by 248 nm excimer laser pumping, followed by rapid radiationless transitions to the ground electronic state. For the range of experimental cell temperatures used here, the nascent rotational population distributions of the 0000 ground state of CO2 resulting from collisions with hot pyrazine were probed at short times following excitation of pyrazine by the excimer laser pulse. The CO2 translational recoil velocity was also measured for individual rotational levels of the 0000 state. In addition, temperature dependent rate constants and probabilities were determined for energy transfer from the vibrationally hot pyrazine into individual rotational levels of the 0000 state of CO2. The rotational distributions, velocity recoils, and quenching rates exhibit a very weak temperature dependence for production of CO2 high J states, indicating that the CO2 molecules involved in these energy transfer events originate from rotational levels only slightly greater than the thermal mean J value. Based on these results, values for ΔE, the energy transfer from hot pyrazine to CO2 resulting in final CO2 0000 states J=58 through J=82, are estimated to range from 2550 to 7090 cm−1 in a single collision.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call