Abstract

Pancreatic cancer is an increasing cause of cancer related death worldwide. KRAS is the dominant oncogene in this cancer type and molecular rationale would indicate, that inhibitors of the downstream target MEK could be appropriate targeted agents, but clinical trials have failed so far to achieve statistically significant benefit in unselected patients. We aimed to identify predictive molecular biomarkers that can help to define subgroups where MEK inhibitors might be beneficial alone or in combination. Next-generation sequencing data of 50 genes in three pancreatic cancer cell lines (MiaPaCa2, BxPC3 and Panc1) were analyzed and compared to the molecular profile of 138 clinical pancreatic cancer samples to identify the molecular subtypes of pancreatic cancer these cell lines represent. Luminescent cell viability assay was used to determine the sensitivity of cell lines to kinase inhibitors. Western blot was used to analyze the pathway activity of the examined cell lines. According to our cell viability and pathway activity data on these model cell lines only cells harboring the rare G12C KRAS mutation and low EGFR expression are sensitive to single MEK inhibitor (trametinib) treatment. The common G12D KRAS mutation leads to elevated baseline Akt activity, thus treatment with single MEK inhibitors fails. However, combination of MEK and Akt inhibitors are synergistic in this case. In case of wild-type KRAS and high EGFR expression MEK inhibitor induced Akt phosphorylation leads to trametinib resistance which necessitates for MEK and EGFR or Akt inhibitor combination treatment. In all we provide strong preclinical rational and possible molecular mechanism to revisit MEK inhibitor therapy in pancreatic cancer in both monotherapy and combination, based on molecular profile analysis of pancreatic cancer samples and cell lines. According to our most remarkable finding, a small subgroup of patients with G12C KRAS mutation may still benefit from MEK inhibitor monotherapy.

Highlights

  • Despite the recent success of targeted therapies treating several tumor types, pancreatic cancer still has very poor prognosis

  • The aim of our research was to analyze if there is a subtype of pancreatic cancer patients based on detailed molecular profile available in clinical settings, which would benefit from MEK inhibitors in monotherapy or in combination with other targeted therapies in clinical trials or off label indications, and to provide scientific rationale to initiate new trials with MEK inhibitors in specific molecular subtypes of pancreatic cancers

  • Based on generation sequencing of 50 genes the molecular profile of MiaPaCa2, BxPC3 and Panc1 cell lines together represent more than the third of pancreatic cancer types

Read more

Summary

Introduction

Despite the recent success of targeted therapies treating several tumor types, pancreatic cancer still has very poor prognosis. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Oncompass Medicine Ltd. provided support in the form of salaries for authors IP, RS, EV and OF, but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. The specific roles of these authors are articulated in the ‘author contributions’ section

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call