Abstract

Molecular level studies of metal crystal and nanoparticle surfaces under catalytic reaction conditions at ambient pressures during turnover were made possible by the use of instruments developed at the University of California at Berkeley. Sum frequency generation vibrational spectroscopy (SFGVS), owing to its surface specificity and sensitivity, is able to identify the vibrational features of adsorbed monolayers of molecules. We identified reaction intermediates, different from reactants and products, under reaction conditions and for multipath reactions on metal single crystals and nanoparticles of varying size and shape. The high-pressure scanning tunneling microscope (HP-STM) revealed the dynamics of a catalytically active metallic surface by detecting the mobility of the adsorbed species during catalytic turnover. It also demonstrated the reversible and adsorbate-driven surface restructuring of platinum when exposed to molecules such as CO and ethylene. Ambient pressure X-ray photoelectron spectroscopy (AP-XPS) detected the reversible changes of surface composition in rhodium-palladium, platinum-palladium, and other bimetallic nanoparticles as the reactant atmosphere changed from oxidizing to reducing. It was found that metal nanoparticles of less than 2 nm in size are present in higher oxidation states, which alters and enhances their catalytic activity. The catalytic nanodiode (CND) confirmed that a catalytic reaction-induced current flow exists at oxide-metal interfaces, which correlates well with the reaction turnover.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.