Abstract

The structures and relative stabilities of (MgCl(2))(n)() sheetlike clusters and nanoballs were studied by quantum chemical methods. The sheets as discrete molecules were studied up to Mg(100)Cl(200). Their stabilities increase systematically as a function of the size of the sheet. Periodic ab initio calculations were performed for (001) monolayer sheets of alpha- and beta-MgCl(2), beta-sheet being slightly favored. Nanoballs were constructed from Archimedean polyhedra, producing tetrahedral, octahedral, and icosahedral symmetries, and were studied up to Mg(60)Cl(120). Nanoballs prefer to take the shape of truncated cuboctahedron (Mg(48)Cl(96)). Comparisons to sheetlike clusters and periodic calculations suggest that magnesium dichloride nanoballs are stable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call