Abstract

Stability constants of complexes formed by gossypol and by ten of its Schiff bases with Ag (+) cations were determined by the potentiometric method. The potentiometric and ESI MS experiments indicate the formation of AgL (+) and Ag 2L (2+) complexes between the Schiff bases G1-G7 and Ag (+) cations as well as the formation of AgL (+), Ag 2L (2+), AgL 2 (+) and Ag 3L 2 (3+) complexes between the Schiff bases G8-G10 and Ag (+) cations. The highest stability constant was found for the AgL (+) complex of G8 Schiff base and the lowest one for the AgL (+) complex of G molecule. The (13)C NMR spectra of mixtures between G and AgClO 4 as well as G1-G10 and AgClO 4 indicate that the complexation of the Ag (+) cations is exclusively realized by the aldehyde-aldehyde tautomer of gossypol and by the enamine-enamine form of gossypol Schiff bases, respectively. We show that the main coordination sites for the Ag (+) metal cations are either the oxygen or the nitrogen atoms of the amine parts of the Schiff bases of gossypol. The energetically most favorable structures of the Ag (+) complexes with gossypol (G) or with the gossypol Schiff bases (G1-G10) were calculated and visualized by the AM1d method at an semiempirical level of theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.