Abstract

Euplotes is diversified into dozens of widely distributed species that produce structurally homologous families of water-borne protein pheromones governing self-/nonself-recognition phenomena. Structures of pheromones and pheromone coding genes have so far been studied from species lying in different positions of the Euplotes phylogenetic tree. We have now cloned the coding genes and determined the NMR molecular structure of four pheromones isolated from Euplotes petzi, a polar species which is phylogenetically distant from previously studied species and forms the deepest branching clade in the tree. The E.petzi pheromone genes have significantly shorter sequences than in other congeners, lack introns, and encode products of only 32 amino acids. Likewise, the three-dimensional structure of the E.petzi pheromones is markedly simpler than the three-helix up-down-up architecture previously determined in another polar species, Euplotes nobilii, and in a temperate-water species, Euplotes raikovi. Although sharing the same up-down-up architecture, it includes only two shortα-helices that find their topological counterparts with the second and third helices of the E.raikovi and E.nobilii pheromones. The overall picture that emerges is that the evolution of Euplotes pheromones involves progressive increases in the gene sequence length and in the complexity of the three-dimensional molecular structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.