Abstract

Molecular structuremolecular structure is a reflection of the Born–Oppenheimer separation of electronic and nuclear motion, which is in turn a consequence of the large difference between the electron and nuclear masses. One consequence of this separation is the concept of a potential energy surface for nuclear motion created by the faster moving electrons. Corollaries include equilibrium structures, transition states, and reaction paths which are the foundation of the description of molecular structure and reactivity. However the Born–Oppenheimer approximation is not uniformly applicable and its breakdown results in perturbations in molecular spectra, radiationless decay, and nonadiabatic chemical reactions.molecular structureapproximation methods There are many issues that can be addressed in a discussion of molecular structure, including the structure and bonding of individual classes of molecules, computational and/or experimental techniques used to determine or infer molecular structure, the accuracy of those methods, etc. In an effort to provide a broad view of the essential aspects of molecular structure, this Chapter considers issues in molecular structure from a theoretical/computational perspective using the Born–Oppenheimer approximation as the point of origin. Rather than providing a compendium of results, this chapter will explain how issues in molecular structure are investigated and how the questions that can be addressed reflect the available methodology. Even with these restrictions the scope of this topic remains enormous and precludes a detailed presentation of any one issue. Thus the abbreviated discussions in this work are supplemented by ample references to the literature. Severalpotential energy surface (PES) aspects of potential energy surfaces and their relation to molecular structure will be considered: (i) the electronic structure techniques used to determine a single point on a potential energy surface, and the interactions that couple the electronic states in question, (ii) the local properties of potential energy surfaces, in particular equilibrium structures and rovibrational levels that provide the link to experimental inferences concerning molecular structure, (iii) global chemistry deduced from potential energy surfaces including reaction mechanisms and reaction paths and (iv) phenomena resulting from the nonadiabatic interactions that couple potential energy surfaces.molecular structurerotationmolecular structurevibration

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call