Abstract

The Fourier transform infrared (FT-IR) and FT-Raman of 1-methylnaphthalene (1MN) have been recorded and analyzed. The equilibrium geometry, bond lengths, bond angles and harmonic vibrational frequencies have been investigated with the help of density functional theory (DFT) method. Vibrational spectroscopic assignments of 1-methylnaphthalene (1MN) are carried out with the help of quantum chemical calculation. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule are calculated by the Gauge including atomic orbital (GIAO) method. The molecular stability and bond strength have been investigated by using natural bond orbital analysis (NBO). The assignments of vibrational spectra have been carried out with the help of normal co-ordinate analysis (NCA) following the scaled quantum mechanical force field (SQMFF) methodology. The 1H and 13C nuclear magnetic resonance (NMR) chemical shift of the molecular is depend only on the structure of the molecule. The calculated HOMO and LUMO energy shows that charge transfer interactions take place within the molecule. Finally, the calculation results are applied to simulate infrared and Raman spectra of the title compound which show good agreement with observed spectra.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.