Abstract

Abstract Results on the molecular and liquid structure and the reorientational dynamics are reported for the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]). In quantum-chemical calculations for [BMIM][PF6] in the gas phase, hydrogen bonding between the proton at carbon 2 in the aromatic ring and the fluorine atoms of the hexafluorophosphate anion was found. From the analysis of 13C relaxation data, the reorientational motions were evaluated, and the Vogel-Fulcher-Tammann and Arrhenius activation energies for the overall and internal reorientational motions, respectively, of the different 13C-1H vectors are given as well as correlation times at 300 K. By performing molecular dynamics (MD) simulations, pair distribution functions between moieties in the cation and the phosphorous atom in the anion were determined. The pair distribution function for the proton at carbon 2 exhibits a particular sharp and strong maximum indicating a strong interaction with the anion. The quantum-chemical calculations, the motional parameters, and the results from the MD simulations support the existence of hydrogen bonding and the formation of ion pairs in the ionic liquid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call