Abstract

Secondary structure contents of tetanus neurotoxin have been estimated at neutral and acidic pH using circular dichroism (CD) and Fourier transform infrared (FT-IR) spectroscopy. An analysis of the far-ultraviolet CD spectra of the neurotoxin dissolved in 50 mM citrate-phosphate buffer (pH 7.0) revealed 20.0 +/- 2.1% alpha-helix, 50.5 +/- 2.1% beta-pleated sheets, no beta-turns, and 29.5% random coils, which is at considerable variance with results from an earlier detailed study of tetanus neurotoxin's secondary structures (J.P. Robinson, L.A. Holladay, J.H. Hash and D. Puett, J. Biol. Chem. 257 (1982) 407). However, the alpha-helix content estimated in this study is consistent with the earlier studies of Robinson et al. (J.P. Robinson, L.A. Holladay, J.B. Picklesimer and D. Puett, Mol. Cell. Biochem. 5 (1974) 147; J.P. Robinson, J.B. Picklesimer and D. Puett, J. Biol. Chem. 250 (1975) 7435) and with the study by Lazarovici et al. (P. Lazarovici, P. Yanai and E. Yavin, J. Biol. Chem. 262 (1986) 2645), although other secondary structural features do not agree with those of the previous studies. Secondary structure estimation from Fourier transform infrared spectra in both amide I and amide III frequency regions revealed 22-23% alpha-helix, 49-51% beta-pleated sheets and 27-28% random coils, indicating a good correlation with the secondary structure content estimated from CD analysis. Lowering of the pH of the neurotoxin to 5.5 or 4.0 did not result in any noticeable change in the overall secondary structures. However, there were significant pH-induced variations observed in the individual curve-fitted FT-IR bands in the amide III frequency region. For example, the 1302 cm-1 band (relative area, 4.2%) observed at pH 7.0 was shifted to 1297 cm-1 (relative area, 2.2%) at pH 5.5, and the relative area of the band at 1316-1317 cm-1 (alpha-helix) increased by approx. 40%. This study suggests that contrary to earlier reports, tetanus neurotoxin is a beta-pleated sheet dominated structure, and although lower pH does not change the overall contents of the secondary structures, significant conformational alterations are observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.