Abstract

Abstract The molecular structure of interphases in aluminum/epoxy and steel/epoxy adhesive joints was characterized using infrared spectroscopy. In one series of experiments, adhesive joints were prepared by curing beams of epoxy against aluminum or steel substrates. When the joints were cooled to room temperature, the residual stresses were sufficient for crack propagation along the interface. The adhesive and substrate failure surfaces were then analyzed with reflection-absorption infrared spectroscopy (RAIR), attenuated total reflection infrared spectroscopy (ATR) and X-ray photo-electron spectroscopy (XPS). When an epoxy/anhydride adhesive was cured against aluminum substrates primed with an aminosilane coupling agent, amide and imide groups were formed in the interphase. Chemical reaction between the primary amine of the primer and the anhydride of the curing agent precluded chemical bridge formation between the primer and adhesive. Metal cations from the 2024 aluminum substrate reacted with the anhy...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.