Abstract

l-histidine tetra fluroborate (L-HTFB) is a semi-organic NLO material. Ab-initio computations were performed at CAM-B3LYP/ 6-311++g(d,p) level of theory to arrive at the structures, energies, and vibrational wave numbers. The experimental FT-IR and FT-Raman spectra of L-HTFB have been recorded and analyzed. It is compared with the simulated spectra. The scaled wave numbers obtained are in good agreement with the experimental values. Hirshfeld surface analysis represented in the 2D fingerprint plot reveals the interaction within the compound. Optimized geometry reveals that the complexes l -histidine (L-H) and tetrafluoroborate (TFB) are linked by H-F bond which provides inter and intra molecular hydrogen bonded interactions such as N10-H16⋯F25, N11-H17⋯F22, N11-H14⋯F24, N11-H14⋯N10 and N11-H15⋯O12. The inter-molecular distances H17⋯F22, H14⋯F24 and H16⋯F25 are in between 1.82 Å and 2.53 Å. The intra molecular distances H14⋯N10 and H15⋯O12 are found to be at 2.17 Å and 1.71 Å which stabilizes lone pair electron of N10 and O12 with energies 11.89 and 59.91 KJ/mol respectively. The intra and inter molecular hyperconjugations responsible for the stability of the molecule are well identified theoretically using the NBO analysis. Third order optical nonlinearity is measured by means of the open aperture Z-scan technique which reveals that the crystal has optical limiting property. Photoluminescence results clearly indicate the use of L-HTFB as a new violet-light emitting material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.