Abstract

Squaric acid dimethyl ester (C(6)O(4)H(6); 3,4-dimethoxycyclobut-3-ene-1,2-dione; DCD) was studied by matrix isolation infrared spectroscopy and by density functional theory (B3LYP) and ab initio (MP2) calculations with the 6-31++G(d,p) and 6-311++G(d,p) basis sets. Three conformers of the compound were theoretically predicted. The two most stable conformers were identified in low-temperature argon matrixes and the energy gap between them was determined. The trans-trans conformer (C(2)(v)) was found to be more stable than the cis-trans form (C(s)) by 4.2 kJ mol(-1), in consonance with the theoretical predictions (MP2 calcd = 3.9 kJ mol(-1)). In situ broadband UV irradiation (lambda > 337 nm) of the matrix-isolated compound was found to induce the ring-opening reaction leading to production of the bisketene, 2,3-dimethoxybuta-1,3-diene-1,4-dione as well as the trans-trans --> cis-trans conformational isomerization. The latter phototransformation allowed separation of the infrared spectra of the two conformers initially trapped into a low-temperature matrix. Upon higher energy irradiation (lambda > 235 nm), the main observed photoproducts were CO and deltic acid dimethyl ester (C(5)O(3)H(6); 2,3-dimethoxycycloprop-2-en-1-one), the latter being obtained in two different conformations (trans-trans and cis-trans). According to the experimental data, deltic acid dimethyl ester is produced by decarbonylation of the initially formed bisketene and not by direct CO extrusion from DCD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.