Abstract

Essential oils are volatile oil-like liquids with a characteristic strong smell and taste. They are formed in plants and are then extracted. Essential oils have extremely strong physiological and pharmacological properties, which are used in the medicine, cosmetics, and food industries. In this study, the molecules caryophyllene oxide, β-pinene, 1,8-cineol, α-cubebene, and β-caryophyllene, which are the molecules with the highest contents in the essential oil of the plant mentioned in the title, were selected and theoretical calculations describing their interactions with water were performed. Because oil-water mixtures are very important in biology and industry and are ubiquitous in nature, quantum chemical calculations for binary mixtures of water with caryophyllene oxide, β-pinene, 1,8-cineol, α-cubebene, and β-caryophyllene were performed using the density functional theory (DFT)/B3LYP method with a basis of 6-31 G (d, p). Molecular structures, HOMO-LUMO energies, electronic properties, reactivity (ELF, LOL, and Fukui), and NCI-RDG and molecular electrostatic potential (MEP) on surfaces of the main components of Phlomis bruguieri Desf. essential oil were calculated and described.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.