Abstract

AbstractA detailed structural study of pralidoxime (2‐PAM), the main antidote against organophosphate intoxication, was performed using Hartree‐Fock, Möller–Plesset (MP2), and density functional theory (Becke, Lee, Yang, and Paar [B3LYP]) methods. Rotational barriers, equilibrium geometries, and charge distributions were calculated, showing important differences between the two forms available in physiological conditions, namely with the oxime group protonated or unprotonated. For the protonated form, conjugation between the side chain and the pyridinium ring, although present, has little importance, resulting in a flexible structure. On the other hand, the unprotonated form has a more rigid structure and a smaller charge density on the oxime oxygen. Contrary to the common belief, those results strongly suggest that it may be the protonated form of 2‐PAM, instead of the unprotonated form, that is responsible for the antidote activity of this compound. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.