Abstract

Kinins are important mediators in cardiovascular homeostasis, inflammation, and nociception. Two kinin receptors have been described, B 1 and B 2 . The B 1 receptor is normally absent in healthy tissues, but is highly induced under pathological conditions. To understand the molecular mechanism of B 1 receptor up-regulation, we determined the mouse B 1 receptor gene structure, isolated and characterized the promoter region and studied its transcriptional regulation. The mouse B 1 receptor gene contains two exons (with the entire coding region located in the second exon) and a TATA-less promoter with multiple transcription start sites. A 7.7-kbp portion of the 5'-flanking region was examined for promoter activity in vascular smooth muscle cells (VSMCs). A minimal 92-bp fragment, located immediately upstream of the transcription start region, exerted basal and lipopolysaccharide (LPS)-inducible transcription activity in the sense and antisense orientation, and was thereby identified as an enhancer element. Nuclear extracts from VSMCs showed basal and LPS-inducible binding activity of nuclear factor (NF)-kappaB at this sequence. B 1 receptor transcription activation in response to LPS was abolished by cotransfection with IkappaBalphaDeltaN, an NF-kappaB repressor. In summary, our results reveal the structure of the mouse B 1 receptor gene and the involvement of NF-kappaB in the inducible mouse kinin B 1 receptor expression under pathological conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.