Abstract

All-atom equilibrium molecular dynamics simulations were employed to investigate the structural and dynamical properties of interfacial water on the magnesium oxide surface. The solid support was modeled utilizing two different formalisms, both based on the CLAYFF force field. In one case, the atoms in the MgO substrate are allowed to vibrate, whereas in the other they are maintained rigid. The properties of water within the thin film are assessed in terms of density profiles in the direction perpendicular to the substrate as well as along planes parallel to the substrate, in-plane radial distribution functions, density of hydrogen bonds, residence times in contact with the substrate, and orientation distribution of interfacial water molecules. The contact angle for a small droplet on various substrates (MgO, SiO2, Al2O3) was also calculated and compared with experimental observations. On MgO, the substrate in which the atoms are maintained fixed is the one that most closely reproduces experimental contac...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.