Abstract
A hydrated complex of 1,10-phenanthroline with Cu 2+ cation was intercalated in the interlayer space of montmorillonite. This intercalation occurs initially by through a cation exchange mechanism in which the charge of the complex cation compensates the excess of the negative charge of the interlayer, then, once the cation exchange capacity (CEC) value has been reached, by direct adsorption of the sulfate salt of this complex ( i.e. the cation together with its sulfate counterion). This material has showed interesting entrapping properties of gaseous phases and a peculiar chemical reactivity. However, the complete characterization and explanation of the formation of these materials is difficult with only experimental techniques. Hence, we used computational methods at atomic level to know how are the molecular structure of these complexes and their adsorption capacity of ammonia inside the interlayer confined space of montmorillonite for a better understanding of the experimental behaviour. First Principles calculations were performed based on Density Functional Theory (DFT). The intercalation of the phenanthroline-Cu(II) complex inside the nanoconfined interlayer of montmorillonite is energetically favourable in the relative proportion observed experimentally, being a cation exchange process. The further adsorption of the sulfate salt of the phenanthroline-Cu complex is also energetically possible. The adsorption of ammonia molecules in these montmorillonite-phenanthroline-Cu complexes was also favourable according with experimental behaviour. • DFT studies explain experimental intercalation of phenanthroline-Cu cation in clays. • Intercalation of phenanthroline-Cu(II) cation in smectite is energetically favourable. • DFT simulations confirm ammonia absorption in phenanthroline-Cu-smectite systems. • DFT calculations reproduce the experimental phenanthroline-Cu-smectite properties. • In saturated material NH 3 is immobilized by H bonds forming also ammonium cation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.