Abstract

Type V like collagens are widely distributed in marine invertebrates, particularly crustaceans and molluscs. We have been investigating the nature of collagens in the muscular tissues of crustaceans. The presence of type V like homotrimeric collagen in prawn muscle was noted before. We report here a comparative analysis of collagens purified from the pepsin digest of abdominal and pereiopod muscle tissues of the crab, Scylla serrata. The major collagen in either muscle precipitated at 1.2 M NaCl at acid pH, suggestive of a type V like property. The homotrimeric collagen was then purified to near homogeneity by precipitation with 20% ammonium sulphate. Solubility characteristics and biochemical studies indicated the leg muscle collagens to be highly crosslinked and stabilised by more bound carbohydrates, as compared to the abdominal muscle collagen. Analysis of amino acid composition revealed a close similarity to known type V collagens and the leg muscle collagen was characterised by more lysine hydroxylation and slightly reduced glycine content. The leg muscle collagen had a higher denaturation temperature and intrinsic viscosity than the abdominal muscle collagen. Our results confirm the similarity of major crustacean muscle collagens to vertebrate type V collagen. Further, the relative complexity of leg muscle collagen, unlike the abdominal muscle collagen, correlates to the specific functional requirements, where the former is involved in locomotion and preying and the latter in normal growth and development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call