Abstract
The application of organic fertilizers caused large amounts of dissolved organic matter (DOM) entering the soil environment and influencing the behaviors and fates of heavy metals. Here, we investigated the molecular weight-dependent (high molecular weight [HMW], 1 kDa-0.7 µm; low molecular weight [LMW], <1 kDa) compositions and lead (Pb) binding behaviors of DOM derived from sheep manure-based (SMOF) and shrimp peptide-based organic fertilizers (SPOF) using chromophoric and fluorescent spectroscopy, Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and two-dimensional correlation spectroscopy (2D-COS). Results showed that SMOF released more DOM with higher aromaticity and hydrophobicity, containing more fluvic-like components, carboxylic-rich alicyclic molecules (CRAMs) and lignin phenolic compounds compared to SPOF-DOM with more microbially-transformed heteroatom-containing compounds (CHON, CHONS and CHOS). Furthermore, there was more aromatic compounds with ample carboxyl and hydroxyl groups in HMW-DOM but abundant protein-like components and heteroatom-containing compounds (CHONS and CHOS) in LMW-DOM. SMOF-DOM exhibited more obvious MW-dependent heterogeneity in molecular components compared to SPOF-DOM with higher molecular diversity. Moreover, 2D-COS indicated phenol and carboxyl groups in SMOF-DOM and polysaccharides in SPOF-DOM exhibited superior binding affinities for Pb. Pb binding to HMW-DOM derived from SMOF first occurred in the phenolic groups in fulvic-like substances, while polysaccharides in LMW-DOM first participated in the binding of Pb. In contrast, irrespective of MWs, polysaccharides and humic-like substances with aromatic (CC) groups in SPOF-DOM displayed a faster response to Pb. Furthermore, the polysaccharides which preferentially participated in the binding of Pb to SPOF-DOM and SMOF-derived LMW-DOM may pose a higher risk of Pb in the environment. These results were helpful to understand the effects of sources and size-dependent compositions of DOM on the associated risks of heavy metals in the environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.