Abstract

We have used the asymmetric two-center shell model to calculate the single-neutron energies in the $^{12}$C${+\mathrm{}}^{17}$,18O and $^{13}$C${+\mathrm{}}^{17}$O collisions as a function of the internuclear distance. The periodic resonancelike structures observed in the angle-integrated inelastic cross sections for these systems can be understood in terms of the nuclear Landau-Zener promotion of a loosely bound valence neutron from the 1${d}_{5/2}$ (\ensuremath{\Omega}=(1/2) state to the 2${s}_{1/2}$ state of the oxygen isotopes. Inclusion of the effects of a turning point in the Landau-Zener formula is found to give marked improvements in accounting for the observed angle-integrated inelastic cross sections for these systems. Intermediate structures in the cross sections are found to arise due to the energy-dependent oscillatory behavior of the partial cross sections. While some resonancelike peaks can be attributed to a single orbital angular momentum, many others arise due to the combined contributions of two or more angular momenta.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.