Abstract

In this work, we evaluate the liquid-vapour coexistence diagram and the critical point for two different ranges, and of the square-well dimer fluid, using two different simulation methods: (1) In the critical point vicinity, we use a new algorithm, based on transition rates, that can obtain the chemical potential as a function of the density at a given temperature and (2) Molecular Dynamics simulations using the direct coexistence technique for temperatures far below the critical region. The transition rate method has been proposed by Sastre and was used for the evaluation of the critical temperature of square-well monomers with high accuracy. The simulations in the low-temperature region were carried out using molecular dynamics simulations with the direct coexistence method and a continuous version of the square-well potential proposed recently by Zerón et al.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.