Abstract

The transport of lipids between membrane leaflets, also known as flip-flop, is a key process in regulating the lipid composition of biological membranes. It is also important for the growth of biogenic membranes that are the site for lipid synthesis. It has been shown that the mere presence of transmembrane alpha-helical peptides or proteins enhances the rate lipid flip-flop [Kol et al. (2001) Biochemistry 40, 10500-10506]. Using computational models of natural phospholipids with different headgroups, we calculated the free energy profiles for transferring single phospholipids from bulk water to the center of a dioleylphosphatidylcholine (DOPC) bilayer in the presence of transmembrane helices. The free energy barrier for phosphatidylethanolamine (PE) and phosphatidylglycerol (PG) flip-flop decreased by a few kilojoules per mole when a WALP23 or KALP23 peptide was present in the membrane, while the barrier for PC was not affected. We observed large bilayer deformations during lipid flip-flop when the hydrophilic headgroup is in the hydrophobic interior of the bilayer. The presence of KALP23 or WALP23 decreased the size and stability of these defects, suggesting integral membrane proteins affect the mechanism of flip-flop. There was a large decrease in the free energy of desorption for PE and PG when transmembrane peptides were present. This suggests specific PE and PG interactions with the peptide have a large affect on their stability in the membrane, with implications on cellular lipid and protein trafficking.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.