Abstract

Grand-canonical transition-matrix Monte Carlo simulation is applied to analyze the effect of molecular association on the vapor–liquid coexistence and interfacial behavior of square-well based dimerizing fluids. Finite-size scaling techniques are implemented in conjunction with histogram reweighting to determine the infinite-system surface tension from a series of finite-size simulations. The effect of strength of association and size of association site on coexistence densities, pressure, surface tension, and monomer fraction is presented. Some qualitative features of the dependence of monomer fraction and surface tension on association strength are found to disagree with behavior expected from previous studies using the statistical associating fluid theory (SAFT). Comparison with experimental data shows that molecular models must incorporate an explicit association interaction in order to describe the surface-tension behavior of a real dimerizing fluid (acetic acid).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.