Abstract

Pure polysulfone (PSF) and its composites with chitosan (CST), hyaluronic acid (HA), conventional poly(amidoamine), and hydroxyl poly(amidoamine) dendrimers as the membranes for separation of the gases, methane, carbon dioxide, hydrogen sulfide, nitrogen, and oxygen have been studied by molecular dynamics (MD) and grand canonical Monte Carlo (GCMC) simulations. The transport properties (solubility, diffusivity, and permeability) of pure and gas mixtures in the membranes were calculated and the results of the simulations were compared with the available experimental data. The simulated structural properties of the pure and composite PSF membranes including occupied volume, free volume, surface area, fractional free volume (FFV), and radius of gyration (R g ) were evaluated and their effects on the separability of the gases by the membranes were analyzed and interpreted by the obtained results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.