Abstract
A molecular dynamics simulation was performed to investigate the aggregates of mixing and the interaction between different polymers in aqueous solution. These polymers include partially hydrolyzed polyacryamide (HPAM), hydroxyethylcellulose (HEC) and polyvinylpyrrolidone (PVP). The structures of mixed aggregates were analyzed from the dihedral angle distribution of: (1) pure HPAM; (2) HPAM in aqueous solution; (3) HPAM with small segments of PVP or HEC in aqueous solution. At the same time, the simulated IR spectra and the calculated interaction parameters were used to distinguish the different interactions between HPAM and PVP or HEC. In order to confirm the validity of the simulated predictions, experimental IR spectra of polymer systems were made, and the specific viscosity of the HPAM and PVP or HEC system was measured using capillary viscometry. It can be seen from the viscosity measurements that the viscosity of the HPAM/PVP system in aqueous solution decreases linearly with an increase in concentration of PVP, whereas a maximum viscosity value appears with the increase in concentration of HEC in the HPAM/HEC system. The conclusion was drawn that the interaction between HPAM and HEC is stronger than the one between HPAM and PVP, and that molecular simulation can be considered as an adjunct to experiments and can provide otherwise inaccessible (or, not easily accessible) microscopic information that experimentalists can use.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.