Abstract

Abstract In our previous work, we have investigated the adsorption selectivity of CH4/H2 in three pairs of isoreticular metal-organic frameworks (IRMOFs) with and without interpenetration to study the effect of interpenetration on gas mixture separation through Monte Carlo simulation. In addition, the self-diffusivities and the diffusion mechanism of single H2 and CH4 in these MOFs were examined by molecular dynamics simulations. In this work, we extend our previous work to mixed-ligand MOFs to investigate the effects of interpenetration as well as mixed-ligand on both equilibrium-based and kinetic-based gas mixture separation. We found that methane adsorption selectivity is much enhanced in the selected mixed-ligand interpenetrated MOFs compared with their non-interpenetrated counterparts, similar to what we found before for IRMOFs with single-ligand. At room temperature and atmospheric pressure, molecular-level segregation was observed in the mixed-ligand MOFs, and the extent of the effects of interpenetration is comparable for single-ligand and mixed-ligand MOFs. In addition, we found that the diffusion selectivity in the interpenetrated MOFs is similar to the one in their non-interpenetrated counterparts, while the permeation selectivity in the former is much higher than that in the latter, which corroborates our expectation that interpenetration is a good strategy to improve the overall performance of a material as a membrane in separation applications based only on the single component diffusion results. Furthermore, the CH4 permeability of the selected MOF membrane was also evaluated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.