Abstract

With the methods of density functional theory (DFT) and molecular simulations, we have investigated the structural characteristics and hydrogen storage properties of five new reported boron-phosphorus cube based covalent organic frameworks (BP-COFs) with the higher valency. The structural parameters of five BP-COFs were researched by the numeric Monte Carlo (NMC) method, and the hydrogen adsorption properties were studied with grand canonical Monte Carlo (GCMC) simulations under the pressure of 0.1 bar–100 bar at both 77 K and 298 K. The results reveal that BP-COF-4 and BP-COF-5 possess the higher hydrogen adsorption capacities than BP-COF-1 to BP-COF-3 at both 77 K and 298 K. The possible methods to improve the H2 adsorption properties of five BP-COFs are also proposed. We hope this study may provide some reference and inspiration for exploring new COFs with the higher valency as high-performance hydrogen storage materials in future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call