Abstract

Molecular simulation techniques were appplied to predict the interaction of the voltage-dependent Shaker potassium channel with the channel-blocking toxin kappa-conotoxin-PVIIA (PVIIA). A structural thee-dimensional model of the extracellular vestibule of the potassium channel was constructed based on structural homologies with the bacterial potassium channel Kcsa, whose structure has been solved by X-ray crystallography. The docking of the PVIIA molecule was obtained by a geometric recognition algorithm, yielding 100 possible conformations. A series of residue-residue distance restraints, predicted from mutation-cycle experiments, were used to select a small set of a plausible channel-toxin complex models among the resulting possible conformations. The four final conformations, with similar characteristics, can explain most of the single-point mutation experiments done with this system. The models of the Shaker-PVIIA interaction predict two clusters of amino acids, critical for the binding of the toxin to the channel. The first cluster is the amino acids R2, I3, Q6 and K7 that form the plug of the toxin that interacts with the entrance to the selectivity filter of the channel. The second cluster of residues, R22, F23, N24 and K25, interacts with a channel region near to the external entrance of the pore vestibule. The consistency of the obtained models and the experimental data indicate that the Shaker-PVIIA complex model is reasonable and can be used in further biological studies such as the rational design of blocking agents of potassium channels and the mutagenesis of both toxins and potassium channels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call