Abstract

The transport properties of wax and water mixtures under confinement and particularly inside catalyst nanopores is a topic of significant interest for the petrochemical industry. These mixtures are the products of the Gas-To-Liquids (GTL) process through the Fischer–Tropsch (FT) route, which experienced an increasing number of commercially viable applications over the past decades. Under reaction conditions, water is produced in high concentrations, leading to phase segregation inside the catalyst nanopores and water-assisted sintering of catalytic nanoparticles, reducing catalyst lifetime and increasing GTL operational cost. It is thus important to understand the wax–water liquid–liquid equilibrium (LLE) at reaction conditions, as it determines the maximum allowable amount of water in the FT wax. Furthermore, elucidating the phase behavior of wax–water mixture inside the nanopores, by explicit incorporation of wall effects, is essential in revealing the role of confinement on mixture phase behavior. The ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.